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pseudowords can also activate representations of words, even though they do not
match any word perfectly. As with word displays, feedback from the activated
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the various effects, the fact that expectations influence perception of letters
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cluster frequency are obtained under some conditions and not others.
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Abstract

This paper is the first part of a two-part series introducing an interactive

activation model of context effects in perception. In this part we develop

the model for the perception of letters in words and other contexts and apply

it to a number of experiments in the recent literature. The model is used to

account for the perceptual advantage for letters in words compared to single

l etters and letters in unrelated strings. In the model, these word superior-

ity effects are produced by feedback. The visual input produces partial

activations of letters, which in turn produce partial activations of words.

These activations then produce feedback to the letter level, reinforcing

letter sequences which actually spell words. The model can account for the

basic findings on the perception of pronounceable nonwords as well as words.

The account is based on the idea that pseudowords can also activate represen-

tations of words, even though they do not match any word perfectly. As with

word displays, feedback from the activated words reinforces the letters

* presented, thereby increasing their perceptibility. The model also accounts

for the role of masking in determining the magnitude of the various effects,

the fact that expectations influence perception of letters in pseudowords morc

than letters in words, and for the fact that effects of contextual constraint

and letter cluster frequency are obtained under some conditions and not oth-

ers.
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As we perceive, we are continually extracting sensory information to

guide our attempts to determine what is before us. In addition, we bring to

perception a wealth of knowledge about the objects we might see or hear and

the larger units in which these objects co-occur. As one of us has argued for

the case of reading (Rumeihart, 1977) our knowledge of the objects we night be

perceiving works together with the sensory information in the perceptual pro-

cess. Exactly how does the knowledge which we have interact with the input?

And, how does this interaction facilitate perception?

In this two-part article we have attempted to take a few steps toward

answering these questions. We consider one specific example of the interac-

tion between knowledge and perception -- the perception of letters in words

and other contexts. In Part I we examine the main findings in the literature

on perception of letters in context, and develop a model called the interac-

tive activation model to account for these effects. In Part II (Rumelhart &

McClelland, forthcoming) we extend the model in several ways. We present a

set of studies introducing a new technique for studying the perception of

letters in context, independently varying the duration and timing of the con-

text and target letters. We show how the model fares in accounting for the

results of these experiments and discuss how the model may be extended to an

* account of the pronunciation of nonwords. We also explore the influence ol.

* higher-level (semantic and syntactic) inputs to the perceptual process, not

only for the case of visual word perception but for the perception of speech

r ~ as well. Finally, we consider how the mechanisms developed in the course of

exploring our model of perception might be used in other sorts of processes,

such as categorization, memory search, and retrieval.
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Basic Findings on the Role of Context in Perception of Letters

The notion that knowledge and familiarity play a role in perception has

often been supported by experiments on the perception of letters in words or

word-like letter strings (Bruner, 1957; Neisser, 1967). It has been known for

nearly 100 years that it is possible to identify letters in words more accu-

rately than letters in random letter sequences under tachistoscopic presenta-

tion conditions (Cattell, 1886; see Huey, 1908, and Neisser, 1967 for

reviews). However, until recently such effects were obtained using whole

reports of all of the letters presented. These reports are subject to guess-

ing biases, so that it was possible to imagine that familiarity did not deter-

mine how much was seen but only how much could be inferred from a fragmentary

percept. In addition, for longer stimuli, full reports are subject to forget-

ting. We may see more letters than we can actually report in the case of non-

words, but when the letters form a word we may be able to retain the item as a

single unit whose spelling may simply be read out from long-term memory.

Thus, despite strong arguments to the contrary by proponents of the view that

familiar context really did influence perception, it has been possible until

recently to imagine that the context in which a letter was presented only

influenced the accuracy of post-perceptual processes, and not the process of

perception itself.

The perceptual advantage of letters in words. The seminal experiment of

Reicher (1969) seems to suggest that context does actually influence percep-

tual processing. Reicher presented target letters in words, unpronounceable

nonwords, and alone, following the presentation of the target display with a

presentation of a patterned mask. The subject was then tested on a single
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letter in the display, using a forced choice between two alternative letters.

Both alternatives fit the context to form an item of the type presented, so

that, for example, in the case of a word presentation, the alternative would

also form a word in the context.

Forced choice performance was more accurate for letters in words than for

letters in nonwords or even for single letters. Since both alternatives made

a word with the context, it is not possible to argue that the effect is due to

post-perceptual guessing based on equivalent information extracted about the

target letter in the different conditions. It appears that subjects actually

come away with more information relevant to a choice between the alternatives

when the target letter is a part of a word. And, since one of the control

conditions was a single letter, it is not reasonable to argue that the effect

is due to forgetting letters that have been perceived. It is hard to see how

a single letter, once perceived, could be subject to a greater forgetting than

a letter in a word.

Reicher's finding seems to suggest that perception of a letter can be

facilitated by presenting it in the context of a word. It appears, then, that

our knowledge about words can influence the process of perception.

Our model presents a way of bringing such knowledge to bear. The basic

idea is that the presentation of a string of letters results in partial

activation of representations of letters consistent with the visual input.

These activations in turn produce partial activations of representations of

words consistent with the letters, if there are any. The activated represen-

tations of words then produce feedback which serves to reinforce the activa-

tions of the representations of letters. As a result, letters in words are
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more perceptible, because they receive more activation than representations of

either single letters or letters in unrelated context.

Reicher's basic finding has been investigated and extended in a large

number of studies, and there now appears to be a set of important related

findings that must also be explained. Here follows a brief discussion of

several further results which seem to be both basic and well established.

Irrelevance of word shape. The perceptual advantage for letters in words

does not depend on presenting words in visually distinctive, or even familiar,

forms. Typically, the effects are obtained using words typed in all upper

case type, which minimizes configurational aspects of words as visual forms.

In addition, the word advantage over nonwords can be obtained using stimuli

presented in mixed upper and lower case type (Adams, 1979; McClelland, 1976).

Although performance is affected by mixing upper and lower case letters in the

same string, the disruption is of about the same magnitude for letters in non-

words as it is for letters in words, as long as both types of items are tested

at comparable performance levels (Adams, 1979). It is therefore clear that

the word advantage depends on presenting the target letter in the context of

an item which together with the target forms a familiar arrangement of

letters, independent of its actual visual form.

Dependence on masking. The word advantage over single letters and non-

words appears to depend upon the visual conditions used (Johnston & McClel-

land, 1973; Massaro & Klitzke, 1979; see also Juola, Leavitt & Choe, 1974; and

raylor & Chabot, 1978). The word advantage is quite large when the target

appears in a distinct, high-contrast display followed by a patterned mask of

similar characteristics. However, the word advantage over single letters is

* .. .
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actually reversed, and the word advantage over nonwords becomes quite small

when the target is indistinct, low in contrast and followed by a blank, non-

patterned fieli. Recently, it has also been shown that the word advantage

over single letters is greatly reduced if the patterned mask contains letters

instead of nonletter patterns (Johnston & McClelland, in press; Taylor & Cha-

bot, 1978).

Extension to pronounceable nonwords. The word advantage also applies to

pronounceable nonwords, such as REET or MAVE. A large number of studie:

(Aderman & Smith, 1971; Baron & Thurston, 1973; Carr, Davidson & Hawkins,

1978; Spoehr & Smith, 1975) have shown that letters in pronounceable nonwords

(also called pseudowords) have a large advantage over letters in unpronounce-

able nonwords (also called unrelated letter strings), and three studies (Carr,

et al, 1978; Massaro & Klitzke- 1979; McClelland & Johnston, 1977) have

obtained an advantage for letters in pseudowords over single letters.

It now appears that the pseudoword advantage depends on the subjects'

expectations (Aderman & Smith, 1971; Carr, et al, 1978). Carr, et al (1978)

found that if subjects are under the impression that pseudowords might be

shown, performance on pseudowords is almost as accurate as performance on

letters in words. But if they do not expect any pseudowords, performance on

these items is not much better than performance on unpronounceable nonwords.

Interestingly, Carr, et al (1978) found that the word advantage did not depend

on expectations. There was a sizable advantage for letters in words over

* ,letters in unrelated context whether the subject expected words or only unre-

lated letter strings.
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Another important fact about performance on pseudowords is that differ-

ences in letter cluster frequency do not appear to influence accuracy of per-

ception of letters in either words or pseudowords (McClelland & Johnston,

1977).

Absence of constraint effects. One important finding which rules out

several of the models which have been proposed previously is the finding that

letters in highly constraining word contexts have little or no advantage over

letters in weakly constraining contexts under the distinct target/patterned

mask conditions which produce a large word advantage (Johnston, 1978; see also

jEstes, 1975). For example, if the set of possible stimuli contains only

words, the context _HIP constrains the first letter to be either an S, a C, or

a W, whereas the context _INK is compatible with 12 to 14 letters (the exact

number depends on what counts as a word). We might expect that the former,

more strongly constraining context, would produce superior detection of a tar-

get letter, but, in a very carefully controlled and executed study, Johnston

(1978) found a non-significant effect in the reverse direction. Although

there are some findings suggesting that constraints do influence performance

under other conditions, they do not appear to make a difference under the dis-

tinct target/patterned mask conditions of the Johnston study.

To be successful, any model of word perception must provide an account

not only for Reicher's basic effect, but for the separate and joint effects

(or lack thereof) due to visual conditions, stimulus structure, expectations,

and constraints on the perception of letters in context. Our model provides

an account for all of these effects. We begin by presenting the model in

abstract form, then focus in on the details of the model, and present an
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example of the working of the model in a hypothetical experimental trial.

Subsequently, we turn to a detailed consideration of the findings discussed in

this section. In the final section of Part I, we also consider a few other

facts about the perception of letters in context and suggest how our model

might be extended to account for these effects as well.

The Interactive Activation Model

We approach the phenomena of word perception with a number of basic

assumptions which we want to incorporate into the model. First, we assume

that visual perception takes place within a system in which there are several

levels of processing, each concerned with forming a representation of the

input at a different level of abstraction. For visual word perception, we

assume that there is a visual feature level, a letter level, and a word level,

as well as higher levels of processing which provide "top-down" input to the

word level.

Second, we assume that visual perception involves parallel processing.

There are two different senses in which we view perception as parallel. We

assume that visual perception is spatially parallel. That is, we assume that

information covering a region in space at least large enough to contain a

four-letter word is processed simultaneously. In addition, we assume that

visual processing occurs at several levels at the same time. Thus, our model

of word perception is spatially parallel, (i.e. capable of processing several

letters of a word at one time) and involves processes which operate simultane-

ously at several different levels. Thus, for example, processing at the

letter level presumably occurs simultaneously with processing at the word

level, and with processing at the feature level.
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Thirdly, we assume that perception is fundamentally an interactive pro-

cess. That is, we assume that "top-down" or "conceptually driven" processing

works simultaneously and in conjunction with "bottom-up" or "data driven" pro-

cessing to provide a sort of multiplicity of constraints which jointly deter-

mine what we perceive. Thus, for example, we assume that knowledge about the

words of the language interacts with the incoming featural information in co-

determining the nature and time course of the perception of the letters in the

word.

Finally, we wish to implement these assumptions using a relatively simple

method of interaction between sources of knowledge whose only "currency" is

simple "excitatory" and "inhibitory" activations of a neural type.

Figure I shows the general conception of the model. Perception is

assumed to consist of a set of interacting levels, edch level communicating

with several others. Communication proceeds through a spreading activation

mechanism in which activation at one level "spreads" to neighboring levels.

The communication can consist of both excitatory and inhibitory messages.

Excitatory messages increase the activation level of their recipients. Inhi-

bitory messages decrease the activation level of their recipients. The arrows

in the diagram represent excitatory connections and the circular ends of the

connections represent inhibitory connections. The intra-level inhibitory loop

represents a kind of lateral inhibition in which incompatible units at the

same level compete. For example, since a string of, say, four letters can be

interpreted as at most one four-letter word, the various possible words mutu-

ally inhibit one another and in that way compete as possible interpretations

of the string.
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HIGHER LEVEL INPUT

WOR LEVEL

LETTER LEVEL p HONEME LEVEL

11

VISUAL INPUT ACOUSTIC INPUT

Figure 1. A sketch of some of the processing levels involved in visual
and auditory word perception, with interconnections.

7F
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It is clear that there are many levels which are important in reading and

perception in general and the interactions among these levels are important

for many phenomena. However, a theoretical analysis of all of these interac-

tions introduces an order of complexity which obscures comprehension. For

this reason, we have restricted the present analysis to an examination of the

interaction between a single pair of levels, the word and letter levels. WeI have found that we can account for the phenomena reviewed above by considering

only the interactions between letter level and word level elements. There-

fore, for the present we have elaborated the model only on these two levels,

as illustrated in Figure 2. We have delayed consideration of the effects of

higher-level processes and/or phonological processes, and we have ignored the

j reciprocity of activation which may occur between word and letter levels and

any other levels of the system. We consider aspects of the fuller model

including these influences in Part II.

Specific Assumptions

Representation assumptions. For every relevant unit in the system we

assume there is an entity called a node. We assume that there is a node for

each word we know, and that there is a node for each letter in each position.

The nodes are organized into levels. There are word level nodes, and

letter level nodes. Each node has connections to a number of other nodes.

The set of nodes to which a node connects are called its neighbors. Each con-

nection is two way. There are two kinds of connections: excitatory and inhi-

bitory. If the two nodes suggest each other's existence (in the way that the

node for the word 'the' suggests the node for an initial It' and vice versa)

then the connections are excitatory. If the two nodes are inconsistent with
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WOR!

VISUAL INPUT

Figure 2. The simplified processing system considered in Part I.
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one another (in the way that the node for the word 'the' and the node for the

word 'boy' are inconsistent) then the relationship is inhibitory. (Note that

we identify nodes by the units they detect, placing them in quotes: Stimuli

presented to the system are typed in uppercase letters).

Connections may occur within levels or between adjacent levels. There

are no connections between non-adjacent levels. Connections within the word

level are mutually inhibitory since only one word can occur at any one place

at any one time. Connections between the word level and letter level may be

either inhibitory or excitatory (depending on whether or not the letter is a

part of the word in the appropriate letter position). We call the set of

nodes with excitatory connections to a given node its excitatory neighbors.

We call the set of nodes with inhibitory connections to a given node its inhi-

bitory neighbors.

A subset of the neighbors of the letter 't' are illustrated in Figure 3.

Again, excitatory connections are represented by arrows ending with points and

inhibitory connections are represented by arrows ending with dots. We

emphasize that this is a small subset of the neighborhood of the initial It'.

The picture of the whole neighborhood, including all the connections among

neighbors and their connections to their neighbors, is much too complicated to

present in a two-dimensional figure.

Activation assumptions. There is, associated with each node, a momentary

level of activation. This level of activation is a real number, and for node

i we will represent it by a i(t). Any node with a positive degree of activa-

tion is said to be active. In the absence of inputs from its neighbors, all

nodes are assumed to decay back to an inactive state; that is, to an

~- .~ I-
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Figure 3. A few of the neighbors of the node for the letter It' in the

first position in a word, and their interconnections.
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activation value at or below zero. This resting level may differ from node to

node, and corresponds to a kind of a priori bias (Broadbent, 1967), determined

by frequency of activation of the node over the long term. Thus, for example,

the nodes for high frequency words have resting levels higher than those for

low frequency words. In any case, the resting level for node i is represented

by ri. For units not at rest, decay back to the resting level occurs at some

rate 9i-

When the neighbors of a node are active they influence the activation of

the node by either excitation or inhibition, depending on their relation to

the node. These excitatory and inhibitory influences combine by a simple

weighted average to yield a net input to the unit, which may be either excita-

tory (greater than zero) or inhibitory. In mathematical notation, if we let

ni(t) represent the net input to the unit, we can write the equation for its

value as

nli(t) = Ldijej(t) - IYikik(t), (I)
J k

where the e (t)s are the activations of the active excitatory neighbors of the

node, the ik(t)s are the activations of the active inhibitory neighbors of the

node, and the dijs and Yiks are associated weight constants. Inactive nodes

have no influence on their neighbors. Only nodes in an active state have any

effects, either excitatory or inhibitory.

The net input to a node drives the activation of the node up or down

depending on whether it is positive or negative. The degree of the effect of

the input on the node is modulated by the node's current activity level, to
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keep the input to the node from driving it beyond some maximum and minimum

values (Grossberg, 1978). When the net input is excitatory (ni(t)>O), the

effect on the node is given by

41(t )  = ni(t)( M  - al(t)) .(2)

where M is the maximum activation level of the unit. The modulation has the

desired effect because as the activation of the unit approaches the maximum,

the effect of the input is reduced to zero.

In the case where the input is inhibitory (ni(t)<O), the effect of the

input on the node is given by

4i(t) = ni(t)(ai(t) - m) , (3)

where m is the minimum activation of the unit.

The new value of the activation of a node at time t+6t is equal to the

value at time t, minus the decay, plus the influence of its neighbors at time

t:

ai(t+6t) ai(t) - Qi(ai(t) - ri) + 4i(t). (4)

Input assumptions. Upon presentation of a stimulus a set of featural

inputs are assumed to be made available to the system. During each moment in

time each feature has some probability p of being detected. Upon being

detected, the feature begins sending activation to all letter level nodes

I
- e -. *t ~

..........
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which contain that feature. All letter level nodes which do not contain the

extracted feature are inhibited. The probability of detection and the rate at

which the feature excites or inhibits the relevant letter nodes are assumed to

depend on the clarity of the Visual display. It is assumed that features are

binary and that we can extract either the presence or absence of a particular

ffeature. So, for example, when viewing the letter R we can extract among

other features the presence of a diagonal line segment in the lower right

corner and the absence of a horizontal line across the bottom.

Presentation of a new display following an old one results in the proba-

bilistic extraction of the set of features present in the new display. These

features, when extracted, replace the old ones in corresponding positions.

Thus, the presentation of an 0 following the R described above would result in

the replacement of the two features described above with their opposites.

The Operation of the Model

Now, consider what happens when an input reaches the system. kssume that

at time to all prior inputs have had an opportunity to decay, so that the

entire system is in its quiescent state and each node is at its resting level.

The presentation of a stimulus initiates a chain in which certain features are

extracted and excitatory and inhibitory pressures begin to act upon the letter

level ncdes. The activation levels of certain letter nodes are pushed above

their resting levels. Others receive predominately inhibitory inputs and are

pushed below their resting levels. These letter nodes, in turn, begin to send

activation to those word level nodes they are consistent with and inhibit

those word nodes they are not consistent with. In addition, the various

letter level nodes attempt to suppress each other with the strongest ones



Interactive Activation Model McClelland & Rumeihart

Part I 18

getting the upper hand. As word level nodes become active they in turn comn-

pete with one another and send excitation and inhibition back down to the

letter level nodes. If the input features were close to those for one partic-

ular set of letters and those letters were consistent with those forming a.

particular word, the positive feedback in the system will work to rapidly con-

verge on the appropriate set of letters, and the appropriate word. Ii not,

they will compete with each other and perhaps no single set of letters or sin-

gle word will get enough activation to dcminate the others and their inhibi-

tory relationships might strangle each other. The exact details of this pro-

j cess depend on the values of the various parameters of the model in ways which

we will explore as we proceed.

Simulations

In the following example, as in the remainder of the paper, we illustrate

the properties of the model with computer simulations. For purposes of these

simulations we have made a number of other simplifying assumptions. These

additional assumptions fall into four classes:

(1) discrete rather than continuous time,

(2) simplified feature analysis of the input font,

(3) restrictions of the parameter space, and

* (4) a limited lexicon.

The simulation of the model operates in discrete time slices or ticks,

updating the activations of all of the nodes in the system once each cycle on

the basis of the values on the previous cycle. Obviously, this is simply a

matter of computational convenience, and not a fundamental assumption. We
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have endeavored to keep the time slices "thin" enough so that the model's

behavior is continuous for all intents and purposes.

Any simulation of the model involves making explicit assumptions about

the appropriate featural analysis of the input font. We have, for simplicity,

chosen the font and featural analysis employed by Rumeihart (1971) and by

Rumelhart and Siple (1974) and illustrated in Figure 4I. Although the experi-

ments we have simulated employed different type fonts, presumably the basic

results do not depend on the particular font used. The simplicity of the

present analysis recommends it for the simulations.

We have endeavored to find a single set of parameter values for our model

which would allow us to account for all of the basic findings reviewed above.

In order to keep the search space to an absolute minimum, we have adopted

various restrictive simplifications. We have assumed that the weight parame-

ters, di and Yidendol on the levels of nodes i and jand on no other

characteristics of their identity. This means, among other things, that the

excitatory connections between all letter nodes and all of the relevant word

nodes are equally strong, independent of the identity of the words. Thus, for

example, the degree to which the node for an initial 't' excites the node for

the word 'tock' is exactly the same as the degree to which it excites the node

for a word like 'this,' in spite of a substantial difference in frequency of

usage. To further simplify matters, two types of influences have been set to

zero, namely the word to letter inhibition and the letter to letter inhibi-

tion. We have also assigned the same resting value to all of the letter

nodes, simply giving each node the value of zero. The resting value of nodes

at the word level has been set to a value between -.05 and 0, depending on
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IZ1EIEFL3I

IKLMNDRWR11
3TWFLVHXYZi

Figure 4. The features used to construct the letters in the font assumed
by the simulation program, and the letters themselves (from Humelhart & Siple,
1974).

""JIL
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word frequency. The values of the remaining parameters have been fixed at the

values given in Table 1. In the simulations which follow, all parameters are

* fixed at the values indicated in the table. The table also includes a brief

statement of the significance or rationale for the particular value assigned.

In some cases, fuller discussions are warranted, and are given in the context

of a discussion of the model's behavior in accounting for one effect or

another.

In order to account for the dependence of the phenomena of letter percep-

tion on visual conditions and expectations, it is necessary to assume that

some parameters depend on these factors. The quality of the visual display is

assumed to influence the system in two ways. First of all, it may not be pos-

sible for the visual system to extract all the features of the display if it

becomes too degraded. To capture this possibility, we allow the probability

of feature extraction to vary with the quality of the display. Once the qual-

ity is sufficiently good for perfect feature extraction, the strength of the

effect exerted by the features is assumed to depend on such things as the

brightness, contrast, size, and retinal position of the display. The parame-

ters which reflect the differential strength of the effect of the input are

the feature to letter excitation parameters. It is assumed that these parame-

ters increase and decrease together as visual quality increases or decreases,

but stay in the same ratio. To accommodate the fact that performance depends

in some conditions on the subjects' expectations, we have found it sufficient

to assume that one of the internal parameters of the model is under subject

control. As we shall see below, we are able to provide a straightforward

account of the effects of expectations about whether pronounceable nonwords

will be shown if we assume that subjects have control over the strength of the
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Table 1

Parameter Values Used in the Simulaticis

Paramc.-er Value Remarks

Basic node characteristics
decay rate .07 Scales time. Low value ensures adequacy

of approximation of continuity.
maximum activation 1.00 Scales activations.
minimum activation .20 Small negative value allows rapid re-

activation of inhibited units.

Resting levels
letter level 0 Simplifying assumption.
word level <0 Depends on frequency. (range: 0 to -.05)

Input
p of feat detection var . Depends on visual conditions.
feat-let excitation var. Depends on visual conditions.
feat-let inhibition var. Inhibition much stronger than excitation so
E/i ratio 1/30 that one feature incompatible with a letter

results in net bottom-up inhibition.

Letter-word influences
excitation .07
inhibition .04 Low value allows letter level to excite words

or with some letters incompatible with input.
.21 High value prohibits these activations.

Within-level inhibition

word level .21 Large inhibitory interactions allow correct
word to domintote total activity at word level.

letter level 0 Simplifying assumption. Unnecessary because of
strong inhibition from inappropriate features.

Word-letter feedback
excitation .30
inhibition 0 Simplifying assumption.

Output
integration rate .05 Low rate lets units be quickly activated

then inhibited without becoming accessible.

Output Exponentiation
letter level 10 Scales relation of activation to p(correct).

word level 20 Larger value required to offset greater
number of alternatives.
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letter to word inhibition parameter. We will see why this is so below. In

any case, the parameters which are assumed to be influenced by visual condi-

* tions or expectations are designated as variable in Table 1. As we go along

we will explore the effects of variations in these parameters on the perfor-

mance of the model.

Finally, our simulations have been restricted to four-letter words. We

have equipped our simulation program with knowledge of 1179 four-letter words

occurring at least 2 times per million in the Kucera and Francis word count

(1967). Plurals, inflected forms, first names, proper names, acronyms, abbre-

viations, and occasional unfamiliar entries arising from apparent sampling

flukes have been excluded. This sample appears to be sufficient to reflect

the essential characteristics of the language and to show how the statistical

properties of the language can affect the process of perceiving letters in

words.

An example. For the purposes of this example, imagine that the word WORK

has been presented to the subject and that the subject has extracted those

features shown in Figure 5. In the first three-letter positions the features

of the letters W, 0 and R have been completely extracted. In the final posi-

tion a set of features consistent with the letters K and R have been

extracted, with those features in a portion of the pattern unavailable. We

wish now to chart the activity of the system resulting from this presentation.

Figure 6 shows the time course of the activations for selected nodes at the

word and letter levels respectively.

At the word level, we have charted the activity levels of the nodes for

the words 'work', 'word', 'wear' and 'weak'. Note first, that 'work' is the

A4 L-1 .~
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Figure 5. A hypothetical set of features which might be extracted on a
trial in an experiment on word perception.
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Figure 6. The time course of activations of selected nodes at the word
and letter levels, after extraction of the features shown in Figure 5.
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only word in the lexicon consistent with all the presented information. As a

result, its activation level is the highest and reaches a value of .8 through

the first 40 tmr cycles. The word 'word' is consistent with the bulk of the

information presented and, as a result, first rises and later, as a result of

competition with 'work' is pushed back down below its resting level. The

words 'wear' and 'weak' are consistent with the information presented in the

first and fourth letter positions, but inconsistent with the information in

letter positions 2 and 3. Thus, the activations of these nodes drop to a

rather low level. This level is not quite as low of course as the activation

level of words such as 'gill' which contain nothing in common with the

presented information. Although not shown in the figure these words attain

near-minimum activation levels of about -.20 and stay there as the stimulus

stays on. Returning ti 'wear' and 'weak', we note that these words are

equally consistent with the presented information and thus drop together for

the first 9 or so time units. At this point, however, top-down information

has determined that the final letter is K and not R. As a result, the word

'weak' becomes more similar to the pattern at the letter level than the word

'wear' and, as a result, begins to gain a slight advantage over 'wear.' This

result occurs in the model because as the word 'work' gains in activation it

feeds activation back down to the letter level to strengthen the 'k' over the

'r'. The strengthened 'k' continues to feed activation into the word leveL

and strengthen consistent words. The words containing 'r' continue to receive

activation from the words consistent with Ik', and are therefore ultimately

weakened, as illustrated in the lower panel of the Figure.

One of the characteristics of the parameter set we have adopted is that

feature to letter inhibition is 30 times strunger than feature to letter
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excitation (see Table 1). This ratio ensures that as soon as a feature is

I detected which is inconsistent with a particular letter, that letter receives

relatively strong net bottom-up inhibition. Thus, in our example, the infor-

mation extracted clearly disconfirms the possibility that the letter D has

been presented in the fourth position, and thus the activation level of the

'd' node decreases quickly to near its minimum value. However, the bottom-up

information from the feature level supports both 'k' and 'r' in the fourth

position. Thus, the activation level for each of these nodes rises slowly.

These activation levels, along with those for 'w', 'o' and 'r' push the

activation level of 'work' above zero and it begins to feed back, and by about

time cycle 4 it is beginning to push the 'k' above the 'r' (WORR is not a

word). Note that this separation occurrs just before the words 'weak' and

'wear' separate. It is this feedback that causes them to separate. Ulti-

mately, the 'r' reaches a level well below that of 'k' where it remains, and

the 'k' pushes toward a .8 activation level. Remember that for purposes of

simplicity the word to letter inhibition and the intra-letter level inhibition

have both been set to 0. Thus, 'k' and 'r' both co-exist at moderately high

levels, the 'r' fed only from the bottom-up and the 'k' fed from both bottom-

up and top-down.

Although this example is not too realistic in that we assumed that only

partial information was available in the input for the fourth letter position,

whereas full information is available at the other letter positions, it does

illustrate many of the important characteristics of the model. It shows how

ambiguous sensory information can be disambiguated by top-down processes.

Here we have a very simple mechanism capable of applying knowledge of words in

the perception of their component letters.
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On Making Responses

One of ',he more problematic aspects of a model such as this one is a

specification of how these relatively complex patterns of activity might be

related to the content of percepts and the sorts of response probabilities we

observe in experiments. We assume that responses and perhaps the contents of

perceptual experience depend on the temporal integration of the pattern of

activation over all of the nodes. The integration process is assumed to occur

slowly enough that brief activations may come and go, without necessarily

becoming accessible for purposes of responding or entering perceptual experi-

ence. However, as the activation lasts longer and longer, the probability

that it will be reportable increases. Specifically, we think of the integra-

tion process as taking a running average of the activation of the node aver-

aged over the immediately preceding time interval:

The parameter r represents the relative weighting given to old and new infor-

mation. Larger values of r correspond to larger weight for new information.

Response strength in the sense of Luce's choice model (Luce, 1959), is an

exponential function of the running average activation:

w a (t) (6)
si(t) e

The parameter w determines how rapidly response strength grows with increases
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in activation. Following Luce's formulation, we assumne that the probability

of making a response based on node i is given by

(Rt)=si(t) (7)

Esj(t)
j4L

where L represents the set of nodes competing at the same level with node i.

Most of the experiments we will be considering test subject's performance

on one of the letters in a word, or on one of the letters in some other type

of display. In accounting for these results, we have adopted the assumption

that responding is always based on the output of the letter level, rather than

the output of the word level or sane combination of the two. Thus, with

regard to the previous example, it is useful to look at the "output values"

for the letter nodes 'r', 'k' and 'd'. Figure 7 shows the output values for

these simulations. The output value is the probability that, if a response

was initiated at time t, the letter in question would be selected as the out-

put or response from the system. As intended, these output values grow some-

what more slowly than the values of the letter activations themselves, but

eventually come to reflect the activations of the letter nodes, as they reach

and hold their asymptotic values.

Comments on Related Formulations

Before turning to the applications of the model, some comments on the

relationship of this model to other models extant in the literature is in

order. We have tried to be synthetic. We have taken ideas from our own pre-

vious work and fromn the work of others in the literature. In what follows, we
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letter output values
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Figure 7. "Output values" for the letters 'r', 'k', and 'dafter
presentation of the display shown in Figure 5
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have attempted to identify the sources of most of the assumptions of the model

and to show in what ways our model differs from the models we have drawn on.

First of all, we have adopted the approach of formulating the model in

terms which are similar to the way in which such a process might actually be

carried out in a neural or neural-like system. We do not mean to imply that

the nodes in our system are necessarily related to the behavior of individualI neurons. We will, however, argue that we have kept the kinds of processing

involved well within the bounds of capability for simple neural circuits. The

approach of modeling information processing in a neural-like system has

recently been advocated by Szentagothai and Arbib (1975), and is embodied in

many of the papers presented in the forthcoming volume by Hinton and Anderson

(in press) as well as many of the specific models mentioned below.

One case in point is the work of Levin and Eisenstadt (1975) and Levin

(1976). They have proposed a parallel computational system capable of

interactive processing which employed only excitation and inhibition as its

"currency." Although our model could not be implemented exactly in the format

of their system (called Proteus) it is clearly in the spirit of their model

and could readily be implemented within a variant of the Proteus system.

In a recent paper McClelland (1979) has proposed a cascade model of per-

ceptual processing in which activations on each level of the system drive

those at the next higher level of the system. This model has the properties

that partial outputs are continuously available for processing and that every

level of the system processes the input simultaneously. The present model

certainly embodies these assumptions. It also generalizes them, permitting

information to flow in both directions simultaneously.
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Hinton (1977) has developed a relaxation model for visual perception in

which multiple constraints interact by means of incrementing and decrementing

real numbered values associated with various interpretations of a portion of

the visual scene in an attempt to attain a maximally consistent interpretation

of the scene. Our model can be considered a sort of relaxation system in

which activation levels are manipulated to get an optimal interpretation of an

input word.

James Anderson and his colleagues (Anderson, 1977; Anderson, Silverstein,

Ritz, & Jones, 1977) and Kohonen and his colleagues (Kohonen, 1977) have

developed a sort of pattern recognition system which they call an associative

memory system. Their system shares a number of commonalities with ours. One

thing the models share is the scheme of adding and subtracting weighted exci-

tation values to generate output patterns which represent cleaned up versions

of the input patterns. In particular, our d and >ij correspond to the

matrix elements of the associative memory models. Our model differs in that

it has multiple levels and employs a non-linear cumulation function similar to

one suggested by Grossberg (1978), as mentioned above.

Our model also draws on earlier work in the area of word perception.

There is, of course, a strong similarity between this model and the logogen

model of Morton (1969). What we have implemented might be called a hierarchi-

cal, non-linear, logogen model with feedback between levels and inhibitory

interactions among logogens at the same level. We have also added dynamic

assumptions which are lacking from the logogen model.

'I/ " t
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The notion that word perception takes place in a hierarchical information

processing system has, of course, been advocated by several researchers

interested in word perception (Adams, 1979; Estes, 1975; LaBerge & Samuels,

1974; Johnston & McClelland, in press; McClelland, 1976). Our model differs

from those proposed in many of these papers in that processing at different

levels is explicitly assumed to take place in parallel. Many of the models

are not terribly explicit on this topic, although the notion that partial

information could be passed along from one level to the next so that process-

ing could go on at the higher level while it was continuing at the lower level

had been suggested by McClelland (1976). Our model also differs from all of

these others, except that of Adams (1979), in assuming that there is feedback

from the word level to the letter level. The general formulation suggested by

Adams (1979) is quite similar to our own, although she postulates a different

sort of mechanism for handling pseudowords (excitatory connections among

letter nodes) and does not present a detailed model.

Our mechanism for accounting for the perceptual facilitation of pseudo-

words involves, as we will see below, the integration of feedback from partial

activation of a number of different words. The idea that pseudoword percep-

tion could be accounted for in this way is similar to the assumptions of

Glushko (1979), who suggested that partial activation and synthesis of word

pronunciations could account for the process of constructing a pronunciation

for a novel pseudoword.

The feature extraction assumptions and the bottom-up portion of the word

recognition model are nearly the same as those employed by Rumelhart (1970,

1971) and Rumelhart and Siple (197 4). The interactive feedback portion of the
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model is clearly one of the class of models discussed by Rumeihart (1977) and

could be considered a simplified control structure for expressing the model

proposed in t1h-t paper.

The Word Advantage, and the Effects of Visual Conditions

As we noted previously, word perception has been studied under a varijety

of different visual conditions, and it is apparent that different conditions

produce different results. The advantage of words over nonwords appears to be

largest under conditions in which a bright, high-contrast target is followed

by a patterned mask with similar characteristics. The word advantage appears

to be considerably smaller when the target presentation is dimmer or otherwise

degraded and is followed by a blank white field.

Typical data demonstrating these points (from Johnston & McClelland,

1973) is presented in Table 2. Forced-choice performance on letters in words

is compared to performance on letters imbedded in a row of #l's (e.g., READ vs

#/E##f). The #I's serve as a control for lateral facilitation and/or inhibition.

(The latter factor appears to be important under dim target/blank mask condi-

tions).

Target durations were adjusted separately for each condition so that it

is only the pattern of differences within display conditions which is meaning-

ful. What the data show is that a 15% word advantage was obtained in the

bright target/patterned mask condition, and only a 5% word advantage in the

dim target/blank mask condition. Massaro and Klitzke (1979) obtained about

the same size effects. Various aspects of these results have also been corro-

borated in two other studies (Juola, Leavitt & Choe, 1974; Taylor & Chabot,
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Table 2

Effect of Display Conditions on

Probability Correct Forced Choices in

Word & Letter Perception, from Johnston & McClelland, 1973

SDisplay Type

Visual Conditions Word Letter with #I's

Bright Target/Patterned Mask .80 .65

Dim Target/Blank Mask .78 .73

I

,, -
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1 978).

To understand the difference between these two conditions it is important

to note that in order to get about 75 percent performance in the no-mask con-

dition, the stimulus must be highly degraded. Since there is no patterned

mask, the iconic trace presumably persists considerably beyond the offset of

the presentation. The effect of the blank mask is simply to reduce the con-

trast of the icon by sunmmating with it. Thus, the limit on performance is not

so much the amount of time available in which to process the information as it

is the quality of the information made available to the system. In contrast,

when a patterned mask is employed, the mask interrupts the iconic trace and

produces spurious inputs which can serve to disrupt the processing. Thus, in

the bright target/pattern mask conditions, the primary limitation on perfor-

mance is the time in which the information is available to the system rather

than the quality of the information presented. This distinction between the

way in which blank masks and patterned masks interfere with performance has

previously been made by a number of investigators, including Rumelhart (1970)

and Turvey (1973). We now turn to consider each of these sorts of conditions

in turn.

Word Perception 
Under Conditions 

of Degraded Input

wodIn conditions of degraded (but not abbreviated) input, the role of the

wodlevel is to selectively reinforce possible letters consistent with the

viulinformation extracted which are also consistent with the words in the

su bjec t 's vocabulary. Recall that the task requires the subject to choose

between two letters which Con word trials) both make a word with the rest of

the context. There are two distinct cases to consider. Either thp feoi*_'>l
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information extracted about the to-be-probed letter is sufficient to distin-

guish between the alternatives, or it is not. Whenever the featural informa-

tion is consistent with both of the forced-choice alternatives, any feedback

will selectively enhance both alternatives, but will not permit the subject to

improve his ability to distinguish between them. When the information

extracted is inconsistent with one of the alternatives, there is nothing for

the model to do if we assume that the subject can actually use the extracted

feature information directly when it comes time to make the forced choice.

However, the subject may not have direct access to this information. If we

assume that forced-choice responses are based not on the feature information

itself but on the subject's best guess about what letter was actually shown,

then the model can produce a word advantage. The reason is that feedback from

the word level will increase the probability of correct choice in those cases

where the subject extracts information inconsistent with the incorrect alter-

native, but consistent with a number of other letters. Thus, feedback would

have the effect of helping the subject select the actual letter shown from

several possibilities consistent with the set of extracted features. Consider

again, for example, the case of the presentation of WORD discussed above. In

this case, the subject extracted incomplete information about the final letter

consistent with both R and K. Assume that the forced choice the subject was

to face on this trial was between a D and a K. The account supposes that the

subject encodes a single letter for each letter position before facing the

forced choice. Thus, if the features of the final letter had been extracted

in the absence of any context, the subject would encode R or K equally often

since both are equally compatible with the features extracted. This would

leave him with the correct response some of the time. But if he chose R
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instead, he would enter the forced choice between D and K without knowing the

correct answer directly. When the whole word display is shown, the feedback

generated by the processing of all of the letters greatly strengthens the K,

increasing the probability that it will be chosen over the R, and thus

increasing the probability that the su'bject will proceed to the forced choice

with the correct response in mind.

Our interpretation of the small word advantage in blank mask conditions

is a specific version of the early accounts of the word advantage offered by

Wheeler (1970) and Thompson & Massaro (1973), before it was known that the

effect depends on masking. Johnston (1978) has argued that this type of

account does not apply under patterned mask conditions. We are suggesting

that it does apply to the small word advantage obtained under blank mask con-

ditions like those of the Johnston and McClelland (1973) experiment. We will

see below that the model offers a different account of performance under pat-

terned mask conditions.

We simulated this interpretation of the small word advantage obtained in

blank mask conditions in the following way. A set of 40 pairs of four-letter

words differing by a single letter was prepared. From these words correspond-

ing control pairs were generated in which the critical letters from the word

pairs were presented in non-letter contexts (#'s). Because they are presented

in non-letter contexts, we assumne that these letters do not engage the word

processing system at all. In fact we have run some simulations allowing such

stimuli to interact with word-level knowledge and it makes little difference

to the overall results.
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Each member of each pair of items was presented to the model ~4 times,

yielding a total of 320 stimulus presentations of word stimuli and 320 presen-

tations of single letters. On each presentation, the simulation sampled a

random subset of the possible features to be detected by the system. The pro-

bability of detection of each feature was set at .45. The values of the

feature to letter excitation and inhibition parameters were set at .005 and

15 respectively. As noted previously, these values are in a ratio of 1 to

30, so that if any one of the fourteen features extracted is inconsistent with

a particular letter, that letter receives net inhibition from the features,

and is rapidly driven into an inactive state.

For simplicity, the features were treated as a constant input which

remained on while letter and word activations (if any) were allowed to take

place. At the end of 50 processing cycles, output was sampled. Sampling

results in the selection of one letter to fill each position; the selected

letter is assumed to be the only thing the subject takes away from the target

display.

The forced choice is assumed to occur as follows. The subject compares

the letter selected for the appropriate position against the Forced-choiceI alternatives. If the letter selected is one of the alternatives, then that

alternative is selected. If it is not one of the alternatives, then one of

the two alternatives is simply picked at random.

The simulation was run twice, once using the low value of letter to word

inhibition listed in Table 1 and once using the high value. The results were

different in the two cases. When the small letter to word inhibition value

was used the letters embedded in words were 78% correct, whereas those in V~s
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were 68% correct -- a 10% difference. When the larger value of letter to word

inhibition was used, the two conditions showed no difference. The reason for

this difference is as follows. Under conditions in which incomplete feature

information is extracted from the display, multiple letters become active in

each position. When the letter to word inhibition is strong, these a'~tiva-

tions keep any word from becoming activated. For example, suppose that 'e',

'o', 'c' and lql were all partially activated in the second position after

presentation of the word REA D. Then the activations of 'o', 'c', and'q

would inhibit the node for 'read', the activations of We', 'c' and 'q' would

inhibit the node for 'road', etc. Other partial activations in other posi-

tions would have similar effects. Thus, few words ever receive net excitatory

input, no feedback is generated, and little advantage of words over letters

emerges. When the letter to word inhibition is weak, on the other hand, words

which are consistent with one of the active letters in each position can

become active, thereby allowing for facilitation by feedback. If, as we have

assumed, the letter to word inhibition parameter is under the subject's con-

trol, then this would be a situation in which it would be advantageous for

subjects to use a small value of this parameter. Thus, we would assume that

under conditions of degraded input subjects would be inclined to adopt a low

value of letter to word inhibition, with the effect that partial activation of

multiple possible letters in each position would permit the activation of a

set of possible words.

Apparently, the low value of letter to word inhibition produced a larger

effect in the simulation than is observed in experiments. However, there are,

as Johnston (1978) has pointed out, a number of reasons why an account such as

the one we have offered would overestimate the size of the word advanta, ,.
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For one thing, subjects may occasionally be able to retain an impression of

the actual visual information they have been able to extract. On such occa-

sions, feedback from the word level will be of no further benefit. Second,

even if subjects only retain a letter identity code, they may tend to choose a

forced-choice alternative which is most similar to the letter encoded, instead

of simply guessing when the letter encoded is not one of the two choice alter-

natives. Since the letter encoded will tend to be similar to the letter

shown, this would tend to result in a greater probability correct and less of

a chance for feedback to increase accuracy of performance. It is hard to know

exactly how much these factors should be expected to reduce the size of the

word advantage under these conditions, but they should reduce it some, bring-

ing our simulation closely in line with the results.

Word Perception Under Patterned Mask Conditions

When a high quality display is followed by a patterned mask, we assume

that the bottleneck in performance does not come in the extraction of -feature

information from the target display. Thus, in our simulation of these condi-

tions, we assume that all of the features presented can be extracted on every'

trial. The limitation on performance comes from the fact that the activations

produced by the target are subject to disruption and replacement by the mask

before they can be translated into a permanent form suitable for overt report.

This general idea was suggested by Johnston and McClelland (197.3), and con-

sidered by a variety of other investigators, including Carr, et al (1978),

Massaro and Klitzke (1979) and others. On the basis of this idea, a number of

possinle reasons for the advantage for letters in words have been suggested.

One is that letters in words are for some reason translated more quickly into

A wl
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a non-maskable form (Johnston & McClelland, 1973; Massaro & Klitzke, 1979).

Another is that words activate representations removed from the direct effectsJ of visual patterned masking (Johnston & McClelland, 1973, in press; Carr et

al, 1978; McClelland, 1976). In the interactive activation model, the reason

letters in words fare better than letters in nonwords is that they benefit

from feedback which can either drive then to higher activation levels or which

can keep them active longer in the face of inhibitory influences of masking,

or both. In either case, the probability that the activated letter represen-

tations will be correctly encoded is increased.

To understand how this account works in detail, consider the following

example. Figure 8 shows the operation of our model for the letter E both in

an unrelated letter context and in the context of the word READ for a visual

display of moderately high quality. We assume that display conditions are

sufficient for complete feature extraction, so that only the letters actually

contained in the target receive net excitatory input on the basis of feature

in format ion . After some number of cycles have gone by, the mask is presented

with the same parameters as the target. The -mask simply replaces the target

display at the feature level , resulting in a completely new input to theI letter level. This input, because it contains features incompatible with the

letter shown in all four positions, immnediately begins to drive down the

activations at the letter level. After only a few more cycles, these activa-

tions drop below resting level in both cases. Note that the correct letter

was activated briefly, and no competing letter was activated. However,

because of the sluggishness of the output process, these activations do not

nocessarily result in a high probability of correct report. As shown in the

right half of the figure, the probability of correct report reaches a maximum



Interactive Activation Model McClelland & Rumelhart

Part I 43

letter level activations
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r'igure 8. Activation functions (top) and output values (bottom) for the
Letter F, in unrelated context and in the context of the word READ.
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after 16 cycles at a performance level far below the ceiling.

When the letter is part of a word (in this case, READ), the activation of

the letters results in rapid activation of one or more words. These words, in

turn, feed back to the letter level. This results in a higher net activation

level for the letter embedded in the word. Moreover, since the letter embed-

iod in a word has feedback from the word level to help sustain its activation,

II it is less readily displaced by the mask. This effect is not visible in the

Figure. However, as the input strength is increased and the activations begin

to level off, the difference between these two functions is increasingly in

persistence and not in oieight of the activation curve.

We have carried out several simulations of the word advantage using the

same stimulus list used for simulating the blank mask results. Since the

internal workings of the model are completely deterministic as long as proba-

bility of feature extraction is 1.0, it was only necessary to run each item

through the model once to obtain the expected probability that the critical

letter would be encoded correctly for each item, under each variation of

parameters tried.

One somewhat problematical issue involves deciding when to read out the

results of processing and select candidate letters for each letter position.

letter positions and that the subject learns through practice to choose a time

to read out in order to optimize performance. We have assumed that readout

time may be set at a different point in different conditions, as long as they

are blocked so that the subject knows in advance what tyoce of material will be

presented on each trial in the experiment. Thus, in simulating the Johnston

~Awl
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and McClelland (1973) results, we assumed different readout times for letters

in words and letters in unrelated context, with the different times selected

on the basis of practice to optimize performance on each type of material.

However, this is not a critical characteristic of the account. The word

advantage is only reduced slightly if the same readout time is chosen for both

single letters and letters in words, based on optimal performance averaged

over the two material types.

Employing the parameter values given in Table 1 with the high value of

the letter to word inhibition parameter and the moderate intensity input

j parameters employed in the figure, we get 81 percent correct on the letters

embedded in words and 66 percent correct for letters in a # context or iso-

lated single letters with a 15-cycle target presentation followed immediately

by the mask. The results were hardly effected at all by using the lower value

of letter to word inhibition, for reasons which will be clearer when we con-

sider the effect of this parameter on activation at the word level in the sec-

tion on the perception of pronounceable nonwords below. For either parameter

value, the model provides a close account of the Johnston-Mc~lelland data.

We have explored our model over a substantial range of input parameter

values and have obtained large word advantages over single letters over much

of the range. In the case of very high intensity inputs, however, we were

'1forced to add an additional assumption to produce a reasonably large word

advantage. As we already noted, when the input is very strong the effect of

feedback is to increase the persistence, rather than the height of the letter

activation curves. But as we increase the intensity of the display we also

increase the potency of the mask. Eventually, the mask becomes so strong that
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it can drive activations for both single letters and letters embedded in words

down so quickly that there is little difference between them. In order to get

the advantaa 4n this case, it was necessary to adopt the assumption that

there is a maximum inhibitory effect that can be exerted from the feature to

the letter level. A value of .55 works out well over a large range of

stimulus intensities. Note that for low or moderate values of input strength

this parameter does not come in to play, but it is quite important in the case

of a very high quality display.

Such high quality input conditions represent a kind of upper extreme of

the range we have explored. We have also explored what happens with low qual-

ity inputs in which the stimulus quality is so poor that some of the features

may go undetected. These conditions produce a reasonable word advantage also,

but only as long as a lower value of letter to word inhibition is adopted. As

we saw before, with degraded input it is necessary to use a lower value of

letter to word inhibition in order to allow words to become activated even

when there are multiple letter possibilities active in some or all of the

letter positions.

Effects of Masking with Letters and Words

Several studies in the recent literature examine the effects on word per-

ception of following the target with a mask which is composed of letters or

words, as opposed to a patterned stimulus containing nonsense squiggles or

nonletter printing characters (Jacobson, 1973, 19714; Taylor & Chabot, 1978).

In all three of these studies, it appears that performance on words is worse

when the mask contains unrelated letters or words than it is when the mask

contains nonletters, and there is little or no difference between words and
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unrelated letter strings as masks, as long as the word is unrelated to the

target. One of us has recently collaborated in a study using the Reicher pro-

cedure which shows analogous results (Johnston & McClelland, in press). In

addition, we find that the presence of letters in the mask hurts performance

on single letter displays very little compared to the extent to which it hurts

performance on letters in words. Thus, the word advantage over single letters

is reduced when a mask containing letters is used, compared to non-letter pat-

terned masks.

In these experiments. Johnston and McClelland (in press) compared perfor-

mance on single letters and letters in words under three types of masking con-

ditions: Masking with words, masking with random letter sequences, and masking

with non-letter characters formed by recombining fragments of letters to make

non-letters. One experiment compared perception of letters and words when the

stimuli were masked with non-letter mask characters and when they were masked

with words. Each condition was tested in a separate block of trials, to allow

subjects to try to optimize their performance in each condition. As in most

word perception experiments, target duration was varied between subjects to

f ind a duration for each subject at which about 75% correct average perfor-Imance over all material types was achieved. The results, shown in Table 3,

indicate that there was a large word advantage with the non-letter masks.

This replicates the typical finding in such studies. The interesting finding

is that the word advantage is considerably reduced with word masks. This is

true even though the non-letter character masks contain the same set of line

segments occurring in the letters used in the word masks.

4
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Table 3

Actual & Simulated Results

(Probability Correct Forced Choice)

Johnston & McClelland (in press)

Target Type

Word Letter Difference

Experiment I

Nonletter Mask .86 .71 .15

Word Mask .74 .68 .06

Experiment II

Word Mask .78 .75 .03

Letter Mask .78 .75 .03

Experiment III

Nonletter Mask .86 .65 .21

Letter Mask .79 .71 .08

Simulation

Nonletter Mask .90 .70 .20

Letter Mask .76 .69 .06

Word Mask .76 .69 .06

Note: In Experiment III, target duration was 10 msec longer with letter masks

than with nonletter masks, in order to produce the observed cross-over in-

teraction.

....
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A second experiment compared performance on words and single letters

using two kinds of masks containing letters. In one, the letters spelled

words as in Experiment I; in the other they formed unrelated letter strings.

Both types of material produced a very slight word advantage, and there was no

difference between them.

The third experiment compared performance on words and single letters

with the same non-letter masks used in the first experiment, and with masks

containing four unrelated letters. Target duration was set slightly longer in

the letter mask condition to achieve approximately the same overall percent

correct performance level in each of the two mask conditions. That is, target

duration was always set to be 10 msec longer with letter mask than with the

feature mask. The manipulation was successful in eliminating the overall

difference between feature and letter mask conditions, but did not eliminate

the interaction of target and mask type. The size of the word advantage over

nonwords was more than twice as great in the feature mask condition as in the

letter mask condition.

Our model provides a simple account of the main findings as illustrated

in Figure 9. In the case of word targets, the letters in the mask become

active before the output reaches its maximum strength. These new activations

compete with the old ones produced by the target to reduce the probability of

correctly encoding the target letter. A secondary effect of the new letters

is to inhibit the activation of the word (or words) previously activated by

the mask. This indirectly results is an increase in the rate of decay of the

target letters, because their top-down support is weakened. A tertiary effect

of the mask, if it actually contains a word, is to begin activating a new word
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Figure 9. Activation functions (top) and output probability curves (bot-
tom) for the letter 0, both alone (left) and in the word MOLD (right), with
feature, letter, and word masks.-- - Jl " ' i- .. .I/l l . . . l l l I i] I i i iii t ii ' ii n ,



Interactive Activation Model McClelland & Rumeihart
Part 1 51

at the word level. These later two effects do not actually come into play

until after the peak of the output function has already passed, so they have

no effect on performance.

According to this interpretation, the major role of letters in the mask

is to compete at the letter level with the letters previously activated by the

target. Competition of this sort also happens with single letter targets as

well, but it has less of an effect in this case for the following reason. The

activations for single letter targets are not reinforced by the word level,

and so the bottom-up inhibition generated by the mask more quickly drives the

old activations down. By the time the mask has a chance to activate new

letters, the peak in the output function has already been reached. The new

letters definitely have an effect on the tail of the output function, but we

assume that subjects read out at or near the peak so these differences are

irrelevant.

II In preliminary attempts to simulate these results, we found that the
model was quite sensitive to the similarity of the letters in the target and

the feature-arrays (be they letters or non-letters) in the mask. We therefore

tailored the non-letter mask characters to have the same number of features

different from the target letter they were masking as the mask letters had.

For this reason, it was not feasable to test a large number of different

items. Instead, we tested all four letters in the word MOLD. The letter mask

display was ARAT, and the four feature masks were constructed so that the

first had the same number of features in common with M as the letter A did,

the second had the same number of features in common with 0 as R did, etc.

For the word mask, we simply altered the lexicon of the program so that ARAT

Ia
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"became" a word (if only such manipulations could be used on human subjects!).

Thus, we have tests of four different letters (M,O,L, and D) at each joint

level of ta get type (word, single letter) and mask type (feature, letter

word), and all three masks types are exactly equated in their bottom-up

potency.

The results of the simulation are summarized in the Table 3. In produc-

ing an interaction of this magnitude, we had to assume very high levels of

feature to letter excitation and inhibition (.04 and 1.2, respectively).

Under these conditions, the the bulk of the effect of feedback is to increase

the persistence (rather than the height) of the activation function. The

strong input values for the mask also permit the new letters in the mask to

produce new activations very rapidly at the letter level, thus contributing to

the size of the interaction.

The simulation results shown in the Table were produced using the strong

value (.21) of letter to word inhibition. It seems appropriate to use the

strong value since the subjects expected only words, as discussed in the next

section (with this value, the fact that ARAT is pronounceable is irrelevant to

the functioning of the model, as we shall see). In fact though, the simula-

tion produce." the interaction both with strong and weak letter to word inhibi-

tion, although it is somewhat weaker with weak letter to word inhibition. The

reason for the difference has to do with the strength of the secondary effect

of the mask letters in inhibiting the word(s) activated by the target, thereby

removing the support of the activations of the letters in the target word.

With stronger letter to word inhibition, this effect is stronger than when the

letter to word inhibition is weak.
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The Johnston & McClelland (in press) experiment was designed as a test of

a hierarchical model of word perception. in which there was no feedback from

the word level to the letter level. Instead, readout could occur from either

the letter level or the word level. The greater effectiveness of letter masks

was assumed to be due to activation of new letters which would provide disrup-

tive input to the word level. In our model, the greater effectiveness of

letter masks is also assumed to be due to activation of new letters, but for a

slightlly different reason. Instead of interfering directly with the

representation at the word-level, the new letters produce the bulk of their

effect by interfering with the readout of old activations at the letter level

which are being maintained by feedback. We have not been able to think of a

way of distinguishing these views, since they differ mainly in the level of

the system from which readout occurs, something which may be very difficult to

assess directly. In any case, it is clear that our model provides an account

of the effect of mask letters, in addition to its account of the basic effects

of patterned and unpatterned masks.

Perception of Regular Nonwords

One of the most important findings in the literature on word perception

is that an item need not be a word in order to produce facilitation with

respect to unrelated letter or single letter stimuli. The advantage for pseu-

dowords over unrelated letters has been obtained in a very large number of

studies (Aderman & Smith, 1971; Baron & Thurston, 1973; Carr, et al, 1978;

McClelland, 1976; Spoehr & Smith, 1975). The pseudoword advantage over single

letters has been obtained in three studies (Carr, et al, 1978; Massaro &

Klitzke, 1979; McClelland & Johnston, 1977).



Interactive Activation Model McClelland & Rumelhart
Part I 54

As we have already noted, these effects appear to depend on subjects'

expectations. When subjects know that the stimuli include pseudowords, both

words and pseudowords have an advantage over unrelated letters (and single

letters) and the difference between words and pseudowords is quite small. In

some studies, no reliable difference is obtained (Spoehr & Smith, 1975; Baron

& Thurston, 1973; McClelland & Johnston, 1977) whereas in others, a difference

has been reported of up to about 6% (Carr, et al, 1978; Manelis, 1974; McClel-

land, 1976).

Interestingly, when subjects do not expect pseudowords to be shown,

letters in these stimuli have no advantage over unrelated letters. Aderman

and Smith (1971) found that this was true when the subjects expected only

unrelated letters. Carr, et al (1978) replicated this effect, and added two

very interesting facts (Table 4). First, the word advantage over unrelated

letters can be obtained when subjects expect only unrelated letters, even

though letters in pseudowords show no reliable advantage at -ill tinder these

conditions. Second, when subjects expect only wo-ds th-y perform quitP poorly

on letters in pseudowords compared to unrelatd :-ttors.

At first glance, these data seem to suggfst 'hit,,- must be different

processing mechanisms responsible for the w r ri : wiownri fft:;. There-

seems to be a word mechanism which is Pngag-d il;, A fn : il :v i " the stimu!,J3 is

a word, and a pseudoword mechanism which is hro iht in n play only if pseudo-

words are expected. However, we will show that thes'- rosult3 :ire colmpletelY

consistent with the view that there is a single meohanibm for proc.ssing both

words and pseudowords, with a parameter which is tnder the subject 's control

determining whether the mechanism will produce a facilitation only for words

& A
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Table 4

Effect of Expected Stimulus Type

on the Word and Pseudoword Advantage over Unrelated Letters

(Difference in Probability Correct Forced Choice)

Carr, et al, 1978

Expectation

Target Word Pseudoword Unrelated

Letters

Word .15 .15 .16

Pseudoword .03 .11 -.02

I,
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or for both words and pseudowords. First, we will examine how the model

accounts for the pseudoword advantage at all.

The Basic Pseudoword Advantage

The model produces the facilitation for pseudowords by allowing them to

activate nodes for words which share more than one letter in common with the

display. When they occur, these activations produce feedback, just as in the

case of words, strengthening the letters which gave rise to them. These

activations occur in the model if the strength of letter to word inhibition is

reasonably small compared to the strength of letter to word excitation.

To see how this takes place in detail, consider a brief presentation of

the pseudoword MAVE, followed by a patterned mask (the pseudoword is one used

by Glushko, 1979, in developing the idea that partial activations of words are

combined to derive pronunciations of psetidowords). For this example, the

input parameters corresponding to the moderate quality display were used, in

conjunction with low letter to word inhibition. As illustrated in Figure 10,

presentation of MAVE results in the initial setivation of 16 different words.

Most of these words, like 'have' and 'gave', share three letters in common

with HAVE. By and large, these words steadily gain in strength while the tar-

get is on, and produce feedback to the letter level, sustaining the letters

which supported them.

Some of the words are weakly activated for a brief period of time before

they fall back below zero. These, typically, are words like 'more' and 'many'

which share only two letters with the target but are very high in frequency,

so they need little excitation before they exceed threshold. But, soon after

L
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HAVE

ITIM

Figure 10. Activation at the word level upon presentation of the nonword
MAVE.
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they exceed threshold, the total activation at the word level gets strong

enough to overcome the weak excitatory input, causing them to drop down just

after they iegin to rise. Less frequent words sharing two letters with the

word displayed have a less exciting fate still. Since they start out ini-

tially at a lower value, they generally fail to receive enough excitation to

make it up to threshold. Thus, words which share only two letters in common

with the target tend to exert a rather minimal influence on the amount of

feedback being generated. In general then, the amount of feedback, and hence

the amount of facilitation, depends primarily on the activation of nodes for

words which share three letters with a displayed pseudoword. It is the nodes

for these words which primarily interact with the activations generated by the

presentation of the actual target display, so in what follows we will use the

word neighborhood to refer to the set of words which have three letters in

common with the target letter string.

The amount of feedback a particular letter in a nonword receives depends,

in the model, on two primary factors and two secondary factors. The two pri-

mary factors are the number of words in the entire nonword's neighborhood

which include the letter, and the number of words which do not. In the case

of the M in MAVE, for example, there are 7 words in the neighborhood of MAVE

which begin with M, so the 'im' node gets excitatory feedback from all of

these. These words are called the "friends" of the 'im' node in this case.

Because of competition at the word level, the amount of activation which these

words receive depends on the total number of words which share three letters

in common with the target. Those which share three letters with the target

but are inconsistent with 'i' (e.g., 'have') produce inhibition whi.h t~nds to

limit the activation of the friends of 'im', and can thus be considerod th,
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enemies of 'im'. These words also produce feedback which tends to activate

letters which were not actually presented. For example, activation from

'have' produces excitatory input to 'h', thereby producing some competition

with the 'im'. These activations, however, are usually not terribly strong.

No one word gets very strongly active, and so letters not in the actual

display tend to get fairly weak excitatory feedback. This weak excitation is

usually insufficient to overcome the bottom-up inhibition acting on non-

presented letters. Thus, in most cases, the harm done by top-down activation

of letters which were not shown is minimal.

A part of the effect we have been describing is illustrated in Figure 11.

Here, we compare the activations of the nodes for the letters in MAVE.

Without feedback, the four curves would be identical to the one "single

letter" curve included for comparison. So, although there is facilitation for

all four letters, there are definitely differences in the amount, depending on

the number of friends and enemies of each letter. Note that within a given

pseudoword, the total number of friends and enemies (i.e., the total number of

words with three letters in common) is the same for all the letters.

There are two other factors which affect the extent to which a particular

word will become active at the word level when a particular pseudoword is

shown. Although the effects of these factors are only rather weakly reflected

in the activations at the letter level, they are nevertheless interesting to

note, since they Indicate some synergistic effects which emerge from the

interplay of simple excitatory and inhibitory influences in the neighborhood.

These are the rich-get-richer effect and the gang effect. The rich-get-richer

effect is illustrated in Figure 12, which compares the activation curves for

4L,1to.
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Figure 11. Activation functions for the letters 'a' and 'v' in on presen-
tation of MAVE. Activation function for 'e' is indistinguishable from func-
tion for 'a', and that for 'i' is similar to that for 'v'. The activation
function for a letter alone or in unrelated context is included for compari-
son.
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the nodes for 'have', 'gave', and 'save' under presentation of MAVE. The

words differ in frequency, which gives the words slight differences in base-

line activation. What is interesting is that the difference gets magnified,

so that at the point of peak activation there is a much larger difference.

* The reason for the amplification can be seen by considering a system contain-

ing only two nodes 'a' and 'b', starting at different initial positive activa-

tion levels, 'a' and 'b' at time t. Let's suppose that 'a' is stronger than

'b' at t. Then at t+1, 'a' will exert more of an inhibitory influence on 'b',

since inhibition of a given node is determined by the sum of the activations

of all units other than itself. This advantage for the initially more a,'tive

nx-ies is compounded further in the case of the effect of word frequency by the

fact that more frequent words creep above threshold first, thereby exerting an

inhibitory effect on the lower frequency words when they are still too weak to

fight back at all.

Even more interesting is the gang effect, which depends on the coordi-

nated action of a related set of word nodes. This effect is depicted in Fig-

ure 13. Here, the activation curves for the 'move, 'make', and 'save' nodes

are compared. In the language, 'move' and 'make' are of approximately equal

frequency, so their activations start out at about the same level. But they

soon pull apart. Similarly, 'save' starts out below 'move', but soon reaches

a higher activation. The reason for these effects is that 'make' and 'save'

are both members of gangs with several members, while 'move' is not. Consider

first the difference between 'make' and 'move'. The reason for the difference

is that there are several words which share the same three letters in common

with MAVE as 'make' does. In the list of words used in our simulations, there

are 6. These words all work together to reinforce the in', the 'a', and the

*44.
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the "rich Set richer" effect
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Figure 12. The rich-get-richer effect. Activation functions for the
node fo 'hae',Igae' ad 'ave, tiderpreentaionofHAVE.
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e', thereby producing much stronger reinforcement for themselves. Thus,

these words make up a gang called the 'ma e' gang" In this example. there is

also a ' av' .ang consisting of a different 6 words, of which 'save' is one.

All of these work together- to reinforce the 'a', 'v', and 'e'. Thus, the 'a'

and 'e' are reinforced by two gangs, while the letters 'v' and 'i' are rein-

forced by only one each. Now consider the word 'move'. This word is a loner;

there are no other words in its gang, the 'm ye' gang,. A1 though two of the

letters in 'move' receive support from one gang each, and one receives support.

from both other gangs, the letters of 'move' are iess strong]y enhanced by

feedback than the letters of the members of the other two ganps. Since -or-

inued activation of one word in the face of the competition ,kenerated by alI

of the other partially activated word,; depends on the ativations of the -om-

ponent letter nodes, the words in the other two rangs ,ventual 1y gain the

uPper hand and drive 'move' back below the a-t ivit ion threshold.

As our study of the MA VF example Ill ustr: es , the pa ttern of activ *tio!

which is produced by a particular psoudoword is complex an id iosynrat i . I .

ildition to the basic friends aind enemies effe,-ts. there are also the r i-

gt-richer an,' the gang effects. These effe-ts are primarily reflectei in th,

pattern of acti vation at the word level, but thy also -ert subtl, in ,',u

on the activations at the letter level. In g,,n, ,cI, *hough, the ri- n

is that when the letter to word inhibition is low, alli four letor.4 1 1),

pseuleword receive some feedback rein forcement. The rosili t , of 'our,

I ' ur,, 'v r port ing letters in pse udowords , . .I n nv

0 r-_xi, j t.at ions

It should now be clear thait variation in leter to word inhibition pio-

, i ff.'rent degrees of enhancement. When tfhi pa rrnte'- I - ; -I
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pseudoword advantage is large, and when the parameter is large, the advantage

gets small. Indeed, if the letter to word inhibition is equal to three times

the letter to word excitation, then no four-letter nonword can activate the

node for any four-letter word. The reason is that it can have no more than

three letters in common with a word. The inhibition generated by the letter

which is different will cancel the excitation generated by the letters that

are the same.

We can now account for Carr, et al's (1978) findings with pseudowords by

simply assuming that when subjects expect only words they will adopt a large

value of the letter to word inhibition parameter, but when they expect pseudo-

words they adopt a small value. Apparently, wher they expect unrelated letter

strings, at least of the type used in this experiment, they also adopt a large

value of letter to word inhibition. Perhaps this is the normal setting, with

a relaxation of letter to word inhibition only used if pseudowords are known

to occur in the list or when the stimulus input is very degraded.

But we have still to consider what effects variation of letter to word

inhibition might have for word stimuli. If relaxation of letter to word inhi-

bition increases accura( y for letters in pseudowords, we might expect it to do

the same thing for letters in words. However, in general this is not the

case. Part of the reason is that the word shown still gets considerably more

activation than any other word, and tends to keep the activations of other

node3 from getting very strong. This situation is illustrated for the word

"AVE ir wigure 14. A second factor is that partial activations of other words

:irp not 3n unmixod blessing. The words which receive partial activations all

produce inhibition which keeps the activation of the node for the word shown

- :~~. :
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Figure 14. Activity at the word level upon presentation of CAVE, with
wpak letter to word inhibition.
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from getting activated as strongly as it would be otherwise. The third factor

is that the activations of any one word sharing three letters with the word

shown only reinforce three of the four letters in the display. For these rea-

sons, it turns out that the value of letter to word inhibition can vary from

.04 to .21 with very little effect on word performance.

Comparison of Performance on Words and Pseudowords

Let us now consider the fact that the word advantage over pseudowords is

generally rather small in experiments where the subject knows that the stimuli

include pseudowords. Some fairly representative results, from the study of

MeClelland and Johnston (1977) are illustrated In Table 5. The visual condi-

tions of the study were the same as those used in the patterned mask condition

in Johnston and McClelland (1973). Trials were blocked, so subjects could

adopt the optimum strategy for each type of material. The slight word-

pseudoword difference, though representative, is not actually statistically

reliable in this study.

Words differ from pseudowords in that they strongly activate one node at

the word level. While we would tend to think of this as increasing the amount

of feedback for words as opposed to pseudowords, there is the word-level inhi-

bition which must be taken into account. This inhibition tends to equalize

the totail imount of acl'ivation at the word level between words and pseudo-

words. With words, the word shown tends to dominate the pattern of activity,

thereby keeping all the words with three letters in common with it from

achteving the activation level they would reach in the absence a node

activated by all four letters. The result is that the sum of the activations

of all the active units at. the word level iq not much different between the

'4--f
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Table 5

Actual and Simulated Results of the

McClelland & Johnston (1977) Experiments

(Probability Correct Forced Choice)

Target Type

Word Pseudoword Single Letter

Data

High BF .81 .79 .67

Low BF .78 .77 .64

Average .80 .78 .66

Simulation

High BF .81 .79 .67

Low BF .79 .77 .67

Average .80 .78 .67
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two cases. Thus, CAVE produces only slightly more facilitation for its con-

stituent letters than MAVE as illustrated in Figure 15.

In addition to the mere leveling effect of competition at the word level,

it turns out that one of the features of the design of most studies comparing

performance on words and pseudowords would operate in our model to keep per-

formance relatively good on pseudowords. In general, most studies comparing

performance on words and pseudowords tend to begin with a list of pairs of

words differing by one letter (e.g., PEEL-PEEP), from which a pair of nonwords

is generated differing from the original word pair by just one of the context

letters, thereby keeping the actual target letters and as much of the context

as possible the same between word and pseudoword items (e.g., TEEL-PEEL). A

previously unnoticed side-effect of this matching procedure is that it ensures

that the critical letter in each pseudoword has at least one friend, namely

the word from the matching pair which differs from it by one context letter.

In fact, most of the critical letters in the pseudowords used by McClelland

and Johnston tended to have relatively few enemies, compared to the number of

friends. In general, a particular letter should be expected to have three

times as many friends as enemies. In the McClelland and Johnston stimuli, the

great majority of the stimuli had much larger differentials. Indeed, more

than half of the critical letters had no enemies at all.

The Puzzling Absence of Cluster Frequency Effects

In the account we have just described, facilitation of performance on

letters in pseudowords was explained by the fact tnat pseudowords tend to

activate a large number of words, and these words tend to work together to

reinforce the activations of letters. This account might seem to suggest that
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Figure 15. Activation functions for the letter 'a', under presentation of
CAVE and MAVE, and alone.
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pseudowords which have common letter-clusters, and therefore have several

letters in common with many words, would tend to produce the greatest facili-

tation. However, this factor has been manipulated in a number of studies and

little has been found in the way of an effect. The McClelland and Johnston

study is one case in point. As the table illustrates, there is only a slight

tendency for superior performance on high cluster frequency words. This

slight tendency is also observed in single letter control stimuli, suggesting

that the difference may be due to differences in perceptibility of the target

letters in the different positions, rather than cluster frequency per se. In

any case, the effect is very small. Others studies have likewise failed to

find any effect of cluster frequency CSpoehr & Smith, 1975; Manelis, 1974).

j The lack of an effect is most striking in the McClelland and Johnston study,

since the high and low cluster frequency items differed widely in cluster fre-

quency as measured in a number of different ways.

In our model, the lack of a cluster frequency effect is due to the effect

of mutual inhibition at the word level. As we have seen, this mutual inhibi-

tion tends to keep the total activity at the word level roughly constant over

a variety of different input patterns, thereby greatly reducing the advantage

for high cluster frequency items. Items containing infrequent clusters will

tend to activate few words, but there will be less competition at the word

level , so that the words which do become 3ictive will reach higher activation

levels.

Th- situation is illustrated for the nonwords TEEL and HOEM in Figure 16.

While TEEL activates many more words, the total activation is not much dif-

ferent in the two cases.
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Figure 16. The number of words activated (top) and the total activation

at the word level (bottom) upon presentation of the nonwords TEEL and HOEM.
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The total activation is not, of course, the whole story. The ratio of

friends to enemies is also important. And, it turns out that this ratio is

working against the high cluster items more than the low cluster items. It

turns out that in McClelland and Johnston's stimuli only one of the low clus-

ter frequency nonword pairs had critical letters with any enemies at all! For

23 out of 24 pairs, there was at least one friend (by virtue of the method of

stimulus construction), and no enemies. In contrast, for the high cluster

frequency pairs, there was a wide range, with some items having several more

enemies than friends.

To simulate the McClelland and Johnston results, we had to seloct a sub-

set of their stimuli, since many of the words they used were not in our word

list. Since the stimuli had been constructed in sets containing a word pair,

a pseudoword pair, and a single letter pair differing by the same letters in

the same position ( e.g., PEEL-PEEP TEEL-TEEP: _L- P), we simply selected

all those sets in which both words in the pair appeared in our list. This

resulted in a sample of 10 high cluster frequency sets and 10 low cluster fre-

quency sets. The single letter stimuli derived from the high and low cluster

frequency pairs were also run through the simulation. Both members of each

pair were tested.

Since the stimuli were presented in the actual experiment blocked by

material type, we selected an optimal time for readout separately for words,

pseudowords, and single letters. Readout time was the same for high and low

iluster frequency items of the same type, since these were presented in a

mixed list in the actual experiment. The run shown in the table used tl fol-

lowing parameters: letter to word inhibition was set to the low value (.04);

' , .t '
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the input parameters associated with the moderate quality display were used

(feature to letter excitation =.005, inhibition =.15). The display was

presented f.)r a duration of 15 cycles.

The simulation shows the same general pattern as the actual data. As in

the actual data, the magnitude of the pseudoword advantage over single letters

is just slightly smaller than the word advantage, and the effect of cluster

frequency is very slight. Qualitatively similar results are obtained when the

input parameters associated with the very high quality display are used. For

the word condition, it makes very little difference if the value of letter to

word inhibition is high or low, except that the slight advantage for high

cluster frequency words is eliminated.

We have yet to consider how the model deals with unrelated letter

strings. This depends a little on the exact characteristics of the strings,

and the value of letter to word inhibition. With high letter to word inhibi-

tion, unrelated letters fare no better than pseudowords: they fail to excite

any words, and there is no feedback. When the value of letter to word inhibi-

tion gets low, there is some activity at the word level with many so-called

unrelated letter strings. Generally speaking, however, these strings rarely

have more than two letters in common with any one word. Thus, they only tend

to activate a few words very weakly, and because of the weakness of the

bottom-up excitation, competition among partially activated words keeps any

one from getting very active. So, little benefit results. When we ran our

simulation on randomly-generated consonant strings, there was only a 1% advan-

tage over single letters.
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Some items which have been used as unpronounceable nonwords or unrelated

letter strings do produce a weak facilitation. We ran the nonwords used by

McClelland and Johnston (1977) in their Experiment 2. These items contain a

large number of vowels in positions which vowels tend to occupy in words, and

they therefore tend to activate more words than, say, random strings of con-

sonants. The simulation was run under the same conditions as the one reported

above for McClelland and Johnston's first experiment. The experiment produced

a slight advantage for letters in these nonwords, compared to single letters,

as did the experiment. In both the simulation and the actual experiment,

forced-choice performance was 4% more accurate for letters in these unrelated

letter strings than in single letter stimuli.

On the basis of this characteristic of our model, the results of one

experiment on the importance of vowels in reading may be reinterpreted.

Spoehr and Smith (1975) found that subjects were more accurate reporting

letters in unpronounceable nonwords containing vowels than in all consonant

strings. They interpreted the results as supporting the view that subjects

parse letter strings into "Vocalic Center Groups." However, an alternative

possible account is that the strings containing vowels had more letters in

common with actual words than the all consonant strings.

In summary, the model provides a good account of the perceptual advantage

for letters in pronounceable nonwords but not unrelated letter strings. In

addition, it accounts for the dependence of the pseudoword advantage on expec-

tation and for the lack of ar efrept of expectation on the advantage for

letters in words. Third, the model accounts for the small difference between

performance on words and pseudowords when the subject is aware that the

.4
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stimuli include pseudowords, and for the absence of any really noticeable

cluster frequency effect.

Our examination of the model suggests that there are different ways

interactive activation can influence perception. When letter to word inhibi-

tion is set to a high value, the system acts as a sharply tuned filter. In

this mode, the system will reinforce activations only of those pattIern, which

it has explicitly stored in particular nodes. When the same parameter is set

to a small value, the system allows for nodes for stored patterns which are

similar to the new input to become partially activated, thereby permitting it

to reinforce activations of patterns which are not in fact stored. In this

mode the model shows the capacity to apply knowledge explicitly encoded as

spellings of particular words in such a way that it. t'nilitates the processing

of stimuli that are similar to several stored patterns, but not identical to

any.

the Role of Lexical Constraints

The Johnston Experiment

Several models which have been proposed to account. for the word advantage

rely on the idea that the context letters in a word facilitate performance by

constraining the set of possible letters which might have been presented in

the critical letter position. Models of this class predict. that contexts

which st.rongly constrain what the t-arget letter might be result in great er

ac curacy of perception than more wo,. Klv oonstraining contexts. For example,

the context. HIF should facilitate the -,rception of an initial S more tha-n

the ont.ext INK. The reason is that HIP is more strongly constirininf.
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since only three letters (S, C, and W) fit in the context to make a word, comn-

pa red to INK, where nine letters (D, F, K, L, M, P, R, S, and W) fit in the

oont ext to make a word. In a test of such models,* Johnston k1)7 P3 compared

a-ccujracy o f perception of' letters occurring in high ani d l-w cntan. n

te"x t s. The same target. letters were tested in the sa met po s it i onris in both1

caseS. For ex amp le, the letters S and W were tested in the hizh const rait

HiI P oonitex t and the low constraint -INK context. Us ing br i g ht

target patterned mask conditions. Johnston found no difference in accuracoy of'

perception between letters in the hi gh and low constra intt contex ts. The

results of this ex per iment. are shown inl Table t). Johnst on meaisured let ter

perc(ept I on inl two waIys . He not only asked the -subjects to decide wlAic i o" two

letters haid been present ed kthe forced-choice rneasure) , but he also Isket-d subl-

es to ret.po rt the whole, word and recorded how often they got the itcT

leot t. er correct . No sitgn i f i cont ditf ference was- observed in e it hor caIse . InT

het forc ed c ho icet t here ( was; ,a sIi .tt dif fe re n ce fa vor in low co10W 0 lt 1,.i int Itevm s

but in theit free, rerort t here was no di*.fference ait all.

Al though our miodel does use contcx tuail onrst rant s tas thev ire o mbod i ei

in specitio lexicail irs ,it turns out that, it does not predlict that! highlyv

co-ns4traiininv, oont oxts will ficil1itate perception of l.etters more thai~n woai v

const ra in ng cvont est~s undler bright target opatt ern maisk cond it ions . Under s;uchl

conditions, the role o*f t het word level is not to hel p the ut c eleta,.

-IlIt ern1.1t i ves Ilvft open bly in incomplete featunre nlsspces u a

to h'el p ma:1tnt aim the aot t vat ioin of the nodes for the let t ers pines nt eci

In 'ohnston ' ncx per tient5 s only words wc-re shown , so on t tie, 1ais of our

n tter pret at i On 0of t he A r r et ai I k L,' in d ing s m en t io ned a bo vev, wet woul Id
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Table 6

Actual & Simulated Results from Johnston (1978)

(Probability Correct)

Constraint

High Low

Actual Results

Forced Choice .768 .795

Free Report .545 .544

Simulation

Forced Choice .773 .763

Free Report .563 .5144

Note: Simulation was run using low letter to word inhibition and moderate

qual ity display parameters. Similar results are obtained using high quality

display parameters. There is no effet of constraints when high letter to

word inhibition is used.

Al..
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expect that subjects would tend to adopt a large value of letter to word inhi-

bition. If the .21 value were used, our model produces no difference whatso-

ever between high and low constraint items. The reason is simply that only

the node for the word actually shown ever gets activated at all. The nodes

for all other words receive either net inhibition or a net neutral input if

they share three letters in common with the word shown.

Tt" we assume that a small value of letter to word inhibition is us, (.04

n,;tead+ of .21), our model produces a very small advantage for high constraint

items. in this case, the presentation of a target word results in the weak

arotivation of the words which share three letters in common with the target.

Some of these words are "friends" of the critical letter in that they contain

the actual critical letter shown, as well as two of the letters from the con-

text (e.g., 'shop' is a friend of the initial S in SHIP). Some of the words,

however, are "enemies" of the critical letter, in that they contain the three

context letters of the word, but a different letter in the critical letter

position (e.g, 'chip' and From our point of view, Johnston's constraint mani-

pulation is essentially a manipulation of the number of enemies the critical

letter has in the given context. It turns out that Johnston's high and low

onstraint strmuli have equal numbers of friends, on the average, but (by

.esign), th,! high constraint items have fewer enemies as shown in Table 7.

Us~ o~a low value for the letter to word inhibition results in the

friends ard enemies of the target word receiving some activation. Under these

,,it (wirh ei ther high or moderate quality input parameters) our model

,1 prnduuIe a 1i Lht advantage for the high constraint items. The reason for

th,, ri gh offct is that laterjl interfereno at the word level lets the

/I



Interactive Activation Model McClelland & Rumelhart

Part I 80

Table 7

Friends and Enemies of the

Critical Letters in the

Stimuli Used by Johnston (1978)

High Constraint Low Constraint

friends enemies ratio friends enemies ratio

pos 1 3.33 2.22 .60 3.61 6.44 .36

pos 2 9.17 1.00 .90 6.63 2.88 .70

pos 3 6.30 1.70 .79 7.75 4.30 .64

pos 4 4.96 1.67 .75 6.67 3.50 .66

ave 5.93 1.65 6.17 4.27
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The Broadbent and Gregory Experiment

Up to now we have found no evidence that either bigram frequency or lexi-

cal constraints have any effect on performance. However, in experiments using

the traditional whole report method these variables have been shown to have

substantial effects. Various studies have shown that recognition thresholds

are lower, or recognition accuracy higher at a fixed recognition threshold

value, when relatively unusual words are used (Bouwhuis, 1979; Havens & Foote,

1963; Newbigging, 1961). Such items tend to be low in bigram frequency, and

at the same time high in lexical constraint.

In one experiment, Broadbent and Gregory (1968) investigated the role of

bigram frequency at two different levels of word frequency and found an

interesting interaction. We now consider how our model can account for their

results. To begin, it is important to note that the visual conditions of

their experiment were quite different from those of McClelland and Johnston

(1977) in which the data and our model failed to show a bigram frequency

effect, and of Johnston (1978) in which the data and the model showed no con-

straint effect. The conditions were like the dim target/blank mask conditions

discussed above, in that the target was shown briefly against an illuminated

background, without being followed by any kind of mask. The dependent measure

was the probability of correctly reporting the whole word. The results are

indicated in Table 8. A slight advantage for high bigram frequency items over

low bigram frequency was obtained for frequent words, although it was not con-

sistent over different subsets of items tested. The main finding was that

words of low bigram frequency had an advantage among infrequent words. For

these stimuli, higher bigram frequency actually resulted in a lower percent
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Table 8

Actual and Simulated Results of the

Broadbent & Gregory (1968) Experiment

(Probability Correct Whole Report)

Word Frequency

High Low

Actual Data

High BF .645 .431

Low BF .637 .583

Simulation

High BF .414 .212

Low BF .394 .371

A
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correct.

Unfortunately, Broadbent and Gregory used 5 letter words, so we were

unable to run a simulation on thpir actual stimuli. However, we were able to

select a subset of the stimuli used in the McClelland and Johnston (1977)

experiment which fit the requirements of the Broadbent and Gregory design. We

therefore presented these stimuli to our model, under the presentation parame-

ters used in simulating the blank mask condition of the Johnston and McClel-

land (1973) experiment above. The only difference was that the output was

taken, not from the letter level, as in all of our other simulations, but

directly from the word level. The low value of letter to word inhibition was

used, since with a high value few words ever become activated on the basis of

partial feature information. The results of the simulation, shown in the

Table below the actual data, replicate the obtained pattern very nicely. The

simulation produced a large advantage for the low bigram items, among the

infrequent words, and produced a slight advantage for high bigram frequency

items among the frequent words.

In our model, low frequency words of high bigram frequency are most

poorly recognized because these are the words which have the largest number of

neighbors. Under conditions of incomplete feature extraction, which we expect

to prevail under these visual conditions, the more neighbors a word has the

more likely it is to be confused with some other word. This becomes particu-

larly important for lower frequency words. As we have seen, if both a low

frequency word and a high frequency word are fqually compatible with the

detected portion of the Input, the higher frf,',ieney word will tend to dom-

inate. When incomplete feature information is oxtritv d, the relative ictiva-

14,
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tion of the target and the neighbors is much lower than when all the features

have been seen, Indeed, some neighbors may turn out to be just as compatible

with the features extracted as the target itself. Under these circumstances,

the word of the highest frequency will tend to gain the upper hand. The pro-

bability of correctly reporting a low frequency word will therefore be much

more strongly influenced by the presence of a high frequency neighbor compati-

ble with the input than the other way around.

But why does the model actually produce a slight reversal with high fre-

quency words? Even here, it would seem that the presence of numerous neigh-

bors would tend to hurt instead of facilitate performance. However, we have

forgotten the fact that the activation of neighbors can be beneficial, as well

as harmful. The active neighbors produce feedback which strengthens most or

all of the letters, and these in turn increase the activation of the node for

the word -ijn As it happens, there turns out to be a delicate balance for

high frequency words between the negative and positive effects of neighbors,

which only slightly favors the words with more neighbors. Indeed, the effect

only holds for some of these items. We have not yet had the opportunity to

explore what all the factors are which determine whether the effect of neigh-

bors will balance out to be positive or negative in individual cases.

Different Effects in Different Experiments

This discussion of the Broadbent and Gregory experiment ind lo-tes once

again that our model is something of a chameleon. The model produces no

effect of constraint or bigram frequency under the visual conditions and test-

ing procedures used in the Johnston (1978) and McClelland and Johnston (1977)

experiments, but we do obtain such effects under the conditions of the
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Broadbent and Gregory (1968) experiment. This flexibility of the model, of

course, is fully required by the data. While there are other models of word

perception wh4ch can account for one or the other type of result, to our

knowledge the model presented here is the only scheme that has been worked out

to account for both.

Discussion

The interactive activation model does a good job accounting for the

results of the literature we have reviewed on the perception of letters in

words and nonwords. The model provides a unified account for the results of a

variety of experiments, and provides a framework in which the effects of both

physical and psychological manipulations of the characteristics of the experi-

ments may be accounted for. In addition, as we shall see in Part II, the

model readily accounts for a variety of additional phenomena of word percep-

tion. Moreover, as we shall also show, it can be readily extended beyond its

current domain of applicability with substantial success. In Part 11 we will

report a number of experiments demonstrating what we call "Context Enhancement

Effects," and show how trie model can account for the major findings in the

experiments.

However, there are some problems which we have either ignored or failed

to solve which remain to be resolved. First, we have ignored the fact that

there is a high degree of positional uncertainty in reports of letters, par-

ticularly letters in unrelated strings, but also in reports of letters in

words and pseudowords on occasion (Estes, 1975; McClelland, 1976; McClelland &

Johnston, 1977). It is not entirely clear whether these u;certainty effects

arise in the perceptual system itself, in the readout process, or both. It is
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quite possible that letters are kept well-organized by position in the activa-

tion system, but the process of reading them out is not easily restricted to a

single position channel (cf. Eriksen & Eriksen, 1972). Of course, it is also

quite possible that much of the problem arises from positional uncertainty

within the activation system itself. Although we have not attempted to model

these effects in this paper, our model could easily be modified to account for

the rearrangements of letters and the fact that they occur more frequently in

unrelated letters than in words and pseudowords. Suppose, for example, that

the activations of letters were distributions of activation along a spatial

dimension, instead of points of activation assigned to a particular point in

an array. Then the activations for letters in adjacent positions would over-

lap, and if there was noise in the location of the mean of the distribution of

activation produced by a letter presented in a particular position, order

errors would be expected. Under these circumstances, feedback from the word

level could serve to reinforce that portion of the distribution of activation

in the correct spatial position, thereby shifting the mean of the distribution

toward the right position.

Another thing that we have not considered very fully is the serial posi-

tion curve. In general, it appears that performance is more accurate on the

end letters in multi-letter strings, particularly the first letter. The

effect is much more striking for unrelated letters than for pseudowords or

words (McClelland & Johnston, 1977). While part of this effect may be due to

reduced lateral masking of end letters and/or to a reduced opportunity for

order error at the ends of the string, it seems likely that the first position

advantage reflects some sort of processing priority given to the first letter.

Some or all of this effect could be accommodated by our model by assuming that
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the strength of the effect exerted by the letter in a given position is influ-

enced by the deployment of attention, and that attention is deployed preferen-

tially to Lhe first letter position.

A different possibility that we considered is that part of the serial

position effect could be due to neighborhood effects. However, these would if

anything tend to hurt the first letter position relative to other positions

for the following reason. The first letter is, generally speaking, the letter

which has the most enemies. That is, the largest gangs tend to be those con-

sisting of the last three letters of the item and leaving out the first

letter. Thus, the word level will tend to produce greater feedback for the

second, third and fourth letter than for the first. In view of this, we can

see that one reason for directing attention predominantly to the first letter

would be to offset this gang effect.

There are some effects of set on word perception which we have not con-

sidered. Johnston and McClelland (19714) found that perception of letters in

words was actually hurt if subjects focused their attention on a single letter

position in the word (See also Holender, 1979, and Johnston, 19714). One pos-

nible interpretation of these effects would be that they result from the nar-

rowing of the focus of attention so that visual information from the non-

target letters is simply not made available to the letter and word le'.els.

Another possibility is that the focusing of attention on the contents of a

single letter position disrupts the process of directing the letter informa-

tion into the correct position-specific channels. It seems likely that either

of these possibilities could be worked into our model.
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In all but one of the experiments we have simulated, the primary (if not

the only) data for the experiments were obtained from forced choices between

pairs of letters, or strings differing by a single letter. In these cases, it

seemed to us most natural to rely on the output of the letter level as the

basis for responding. However, it may well be that subjects often base their

responses on the output of the word level. Indeed, we have assumed that they

do in experiments like the Broadbent and Gregory (1968) study, in which sub-

jects were told to report what word they thought they had seen. This may also

have happened in the McClelland and Johnston (1977) and Johnston (1978) stu-

dies, in which subjects were instructed to report all four letters before the

forced choice on some trials. Indeed, both studies found that the probability

of reporting all four letters correctly for letters in words was greater than

we would expect given independent readout of each letter position. It seems

natural to account for these completely correct reports by assuming that they

often occurred on occasions where the subject encoded the item as a word.

Even in experiments where only a forced choice is obtained, subjects may still

come away with a word, rather than a sequence of letters on many occasions.

In the early phases of the development of our model, we explicitly included

the possibility of output from the word level as well as the letter level. We

assumed that the subject would either encode a word, with some probability

dependent on the activations at the word level or, failing that, would encode

some letter for eac'h letter position dependent on the activations at the

letter level. However, we found that simply relying on the letter level per-

mitted us to account equally well for the results. In essence, the reason is

that tho word-level information is incorporated into the act ivations at the

lett.er level because of the feedback, -o that the word level is largely redun-
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dant. In addition, of course, readout from the letter level is necessary to

the model's account of performance with nonwords. Since it is adequate to

account for all of the forced-choice data, and since it is difficult to know

exactly how much of the details of free-report data should ie attributed to

perceptual processes and how much to such things as possible biases in the

readout processes, etc., we have stuck for the present with readout, from the

letter level.

Another decision which we adopted in order to keep thp model within

bounds was to exclude the possibility of processing interactions between the

visual and phonological systems. However, in the model as sketched at the

outset (Figure 1), activations at the letter lev-l interacted with a phonolog-

ical level as well as the word level. As we will show in Part II, some of our

Context Enhancement results with pseudowords are difficult to account for in

the simplified framework applied in Part I. To accommodate the findings, it

may be appropriate to incorporate interactions between the letter level and

the phoneme level.

Another simplification we have adopted in Part I has been to consider

only cases in which individual letters or strings of letters were presented in

the absence of linguistic context. In Part I1 wo will consider the effects of

introducing contextual inputs to the word level, ind we will explore how tne

model might work in processing spoken words in context as well.

Thus far we have commented in this discussion on the completeness of the

interactive activation model to a-count for the data in the literature on word

per,,ption and relited domains. But the model is also interesting for reasons

quite apart from its success in accounting for the data obtained in particular
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experiment.. It. also illustrates the operation of a kind of mechanism which

we believe deserves further exploration, not only for word perception but for

other perceptual domains and other aspects of information processing as well.

Our various simulations show a number of different ways an activation mes-han-

izim c',.i be used to proces.S in for-mation. It can filL iti mi:;sin r i ti'ormat i or n

familiar words. It can act as a sharply tuned filter, foeusing activation on

a s in tgI word cons istent with a I1 of the in format ion presented. Or it car

synthesi:c novel percepts, inaki 1g use of feedback from a number of part i ill v

relevant partial activ ations. In Part II we will consider a few of t he ways

such i mechanism mi ght be used in such diverse tasks as cat egori-:ai ion, momory

search, and retrieval.

__ _ .1
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